If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7u^2+12u+2=0
a = -7; b = 12; c = +2;
Δ = b2-4ac
Δ = 122-4·(-7)·2
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-10\sqrt{2}}{2*-7}=\frac{-12-10\sqrt{2}}{-14} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+10\sqrt{2}}{2*-7}=\frac{-12+10\sqrt{2}}{-14} $
| -11m+-20=35 | | 5(3x-7)+7=(2x-4) | | 9.6(x-3.75)=28.8 | | 3.3=1.4-0.4y | | 3x-7=7x2+2 | | 12x-25=10x+30 | | 4.9t^2+50t+2=0 | | 0.5x+5=-3 | | 11b=11b | | 7-6(4k-8)=247 | | 4x(2x+3)=-2x-4 | | g-(-1)=12 | | 12x-24+10x+30=180 | | 6+3y-6=5y+20 | | 3/4=z/14 | | 5z+17z=44 | | /34=z/14 | | 4.9t^2=0 | | 11-3x=24 | | -144=-8(8a-6) | | 5g+2(-3+3g)=1g | | 4/7y-3/5y=2 | | 3(8x-2)+2x=11 | | -9c+5=12 | | 6(1-3x)=-120 | | 20y+10=180 | | F(x)=3x^2-2x-6 | | 7(p+3)=2(p-2)-3p | | F(x)=x^-x-2 | | 14m-26-7m+18=-36 | | 25y-25=180 | | 6=9n+n |